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Vapor–liquid interfacial tension of square-well~SW! fluids is calculated using three different
methods viz., molecular dynamics~MD! with collision-based virial evaluation, Monte Carlo with
virial computed by volume perturbation, and Binder’s density-distribution method in conjunction
with grand-canonical transition-matrix Monte Carlo~GC-TMMC!. Three values of the SW
attractive well range parameter were studied:l51.5, 1.75, and 2.0, respectively. The results from
MD and GC-TMMC methods are in very good mutual agreement, while the volume-perturbation
method yields data of unacceptable quality. The results are compared with predictions from the
statistical associating fluid theory~SAFT!, and SAFT is shown to give a good estimate for the
systems studied. Liquid and vapor coexistence densities and saturation pressure are determined from
analysis of GC-TMMC data and the results are found to agree very well with the established
literature data. ©2003 American Institute of Physics.@DOI: 10.1063/1.1590313#

I. INTRODUCTION

Interfacial properties are of fundamental interest in many
technological processes. Understanding of interfacial behav-
iors can be aided by the application of theory and simulation
to relatively simple model systems. These studies can un-
cover important qualitative features of interfaces that govern
behavior in real systems. The most successful theoretical ap-
proach has been density functional theory,1 and recently this
technique has been applied with the statistical associating
fluid theory ~SAFT! treatment of associating fluids to con-
sider effects of molecular association on interfacial
properties.2,3 One system studied in this manner is the
square-well model, considering different ranges of
attraction.3 Assessment of the validity of this treatment can
be aided by molecular simulation studies on the same model
system.

There are several approaches for the study of vapor–
liquid equilibrium by molecular simulation. Prominent ex-
amples include Gibbs ensemble Monte Carlo,4 Gibbs–
Duhem integration,5 and NPT1test particle.6 The results of
these methods yield coexistence properties of the bulk
phases, and as they are formulated in a way that does not put
the phases in contact, they are unable to capture interfacial
properties.

To study interfacial properties and structure, simulation
of two coexisting phases within one simulation cell is neces-
sary. Here the liquid-slab arrangement~Fig. 1! is the natural
choice. This system is not commonly examined to evaluate
bulk-phase properties because of concerns about the effect of
the interface, and consequently the need for large system
sizes to ensure that the bulk-phase behavior dominates, but it
is widely used for studies of the interface itself. Even then,
molecular simulation studies of interfaces are inherently in-
efficient, because the important behavior is contributed from
the interfacial region only, which forms a relatively small

portion of the entire system. Yet it is necessary to set up and
simulate—with considerable expense—adjoining bulk
phases which in some sense do not contribute to the proper-
ties of interest. This inefficiency seems to be unavoidable.

One concern in studies of interfaces is with the appro-
priate treatment of long-range contributions to the potential
interactions, which should not be handled as in a bulk fluid
because the density is inhomogeneous.7–11 In the present
study we skirt this issue by selecting to examine the square-
well model, which itself is defined to have no long-range
contributions.

The square-well~SW! model has been studied for de-
cades. It is arguably the simplest model that incorporates
both repulsive and attractive forces between molecules. The
square-well potential is represented as

u~r i j !5H `, 0,r i j ,s,

2«, s<r i j ,ls,

0, ls<r i j ,

wherels is the potential-well diameter,« is the depth of the
well, ands is the diameter of hard core. Because of its sim-
plicity and analytic tractability the SW potential has been
applied as a model of simple atomic systems,12–14 colloidal
particles,15–17 heterochain molecules,18,19 and complex
system,20–22 among others.

The rest of the paper is organized as follows: In the next
section we briefly describe three methods used in this study
for calculating the surface tension by molecular simulation.
Section III describes the details of simulation conditions ap-
plied here. Section IV compares the results of surface tension
obtained by the various methods and discusses the results of
coexistence densities and vapor pressure. We conclude in
Sec. V.
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II. SURFACE TENSION METHODOLOGIES

The conventional way of calculating surface tension by
molecular simulation requires setting up a simulation cell as
shown in Fig. 1. A slab of fluid is placed in a rectangular
simulation cell with periodic boundaries, such that the fluid
spans the short~x,y! dimensions of the simulation volume.
The fluid is in contact with a vapor phase that fills the rest of
the cell.

The thermodynamic definition of the surface tensiong
expresses it in terms of the change in free energyF as the
interfacial areaA of two coexisting phases is changed at
constant volumeV,

g5S ]F

]AD
T,V,N

. ~1!

From this definition one can show that the surface tension
can be expressed in terms of components of the pressure
tensor, such that for the geometry of Fig. 1,

g5 1
2^PZZ2 1

2~PXX1PYY!&, ~2!

wherePaa is theaa component of the pressure tensor. The
factor of 1

2 multiplying the average accounts for the presence
of two interfaces in the system. Two of the methods we use
for the surface-tension calculation are based on this formula,
and differ from each other in how the componentsPaa are
measured.

A. Molecular dynamics

One way of calculating the pressure component is via
the virial23 for pairwise-additive potentials,

Pab5rkT1
1

V K (
i 51

N21

(
j . i

N

~r i j !a~ f i j !bL , ~3!

whereN is the number of molecules,r is the number density,
k is the Boltzmann constant,T is the temperature,r i j is the
vector between the center-of-mass of moleculesi and j, and
f i j 52¹ui j is the force between them when their potential
energy isui j ; the angle brackets indicate an ensemble or
time average. In the square-well model all forces are impul-
sive, having infinite magnitude but acting for an infinitesimal
time. When integrated over time each collision contributes a
well-defined amount to the average in Eq.~3!,

Pab5rkT1
1

Vtsim
(

collisions
~r i j !a~Dpi j !b , ~4!

wheretsim is the total simulation time and the sum is over all
collisions occurring in this time;Dpi j is the impulse associ-
ated with the collision between atomsi andj. The simulation
proceeds in the usual manner for impulsive potentials:23

solve for the time when the next pair collides~which occurs
when any two particles reach a separation equal to the hard-
core or square-well diameters!, advance each particle to that
time via free-flight kinematics, process the dynamics of the
colliding pair, and move on to the next collision to repeat the
process. With each collision a contribution to the pressure-
tensor averages is made in accordance with Eq.~4!.

B. MC-volume change

Calculation of the pressure-tensor components via
Monte Carlo~MC! simulation is complicated by the impul-
sive nature of the contributions to the ensemble average. The
singular contribution to the ensemble average has zero prob-
ability to be encountered in the sampling process, so instead
the virial average must be computed by analysis of the
cavity–cavity distribution function. Several distributions
must be recorded to account for the different components of
the pressure tensor.24 We have not pursued this approach.

Instead we consider the measurement based directly on
the definition of the pressure-tensor components in terms of
derivatives of the free-energy with respect to the each dimen-
sion of the simulation cell. This derivative can be evaluated
via free-energy perturbation methods. Harismiadiset al.25

described a method of this type for measurement of the pres-
sure in an isotropic system. Their method uses the finite-
difference approximation,

bP52~]bA/]V!T,N'2@bA~V1DV!2bA~V!#/DV,

whereP is the pressure, and the difference is measured via a
straightforward free-energy perturbation~FEP! calculation.

In order to get pressure tensor components used in Eq.
~2!, we need two different kinds of volume perturbations. To
get thePzz component, we perform the volume change by
perturbing only in the direction perpendicular to the inter-
face, i.e., in thez direction. During this perturbation the area
of the interface remains constant. To get (Pxx1Pyy), the
component parallel to the interface, we apply volume change
only in the direction parallel tox andy keeping thez dimen-
sion constant. During this perturbation, the width of the in-
terface remains constant.

In an effort to improve the accuracy of the approach, we
applied the overlap-sampling method26 for the FEP calcula-
tion approach. In principle this requires we perform two in-
dependent simulations, one of the system of volumeV per-
turbed to volumeV1DV, and a complementary one for a
system of volumeV1DV perturbed to volumeV. The pres-
sure is then

bP'
N

V
1

1

DV
lnF ^exp@2b~U~V1DV!2U~V!!/2#&V

^exp@2b~U~V2DV!2U~V!!/2#&V
G . ~5!

We applied an approximation in which theV1DV→V cal-
culation is given by a simulation of a system of volumeV
perturbed to one of volumeV2DV.

FIG. 1. Cartoon representing the initial simulation state for MC-volume
change and molecular dynamics simulations.
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C. Grand-canonical transition-matrix Monte Carlo

The third route to the surface tension is based on the
order-parameter distribution formalism of Binder.27 Rather
than set up an explicit interface, Binder’s approach relies on
spontaneous fluctuations that give rise to density inhomoge-
neities which provide information regarding the interfacial
properties. Such an approach naturally lends itself to appli-
cation near the critical point, where the necessary fluctua-
tions are sufficiently large, and where maintenance of a well-
defined interface causes difficulty for the explicit-interface
methods. Until recently implementation of this method has
been limited due to the difficulty of determining the density
probability distribution required by the method. Errington28

has shown how recent advances in sampling methodologies
can be used to extend Binder’s distribution-function method
to conditions significantly away from the critical region. An-
other complication of Binder’s method—the need to know
the coexistence chemical potential—is alleviated by the re-
lated application of histogram reweighting.

At phase coexistence, the grand-canonical density prob-
ability distributionP(r) attains a characteristic double peak
structure.29,30The peaks correspond to stable~or metastable!
homogeneous phases and the intermediate-density probabil-
ity corresponds to a set of both homogeneous and heteroge-
neous configurations. As the system size becomes large,
intermediate-density heterogeneous configurations far out-
weigh homogeneous ones, and the ratio of the density-
probability distribution at the intermediate minimum relative
to the ~mutually equal! peak densities represents the interfa-
cial free energy. Thus to calculate surface free energy one
needs to determine the grand-canonical probability distribu-
tion P(r) of finding the system at densityr5N/V, for the
thermodynamic state that satisfies the criteria for phase equi-
librium.

Rather than work with the density distribution, it is more
convenient conceptually and practically to consider the dis-
tribution of N at constantV. The distribution ofN is de-
scribed by a discrete probability distributionPN

5(s,Ns5Nps , where ps is a grand-canonical microstate
probability, and the sum is over microstates for which the
number of molecules isN. Specifically, for a chemical poten-
tial m, temperatureT ~or inverse temperatureb51/kT), and
volumeV, in the limiting distribution the Markov chain vis-
its a given microstates with a probability,

ps5
VNs

JL3NsNs!
exp@2b~Us2mNs!#, ~6!

whereUs is the configuration energy,J is the partition func-
tion, andL is the de Broglie wavelength.

The free energy of the interface for a finite-size system is
determined from the maximum likelihood in the liquid
PN max

l and vapor regionsPN max
v and minimum likelihood in

the interface regionPN min ,

bFL5 1
2~ ln PN max

l 1 ln PN max
v !2 ln PN min .

From the formalism of Binder, the surface tension for a
finite-size three-dimensional system is given by

bgL5
bFL

2L2 5C1

1

L2 1C2

ln L

L2 1bg` ,

whereg` is the infinite system (L→`) interfacial tension
and C1 and C2 are constants. The expression suggests that
the group bFL/2L2 becomes linear with scaling variable
ln(L)/L2 as the system size approaches infinity. The method
enables one to evaluate the infinite system interfacial tension
by extrapolating a series of finite system calculations.

Away from the critical point, the probability to sponta-
neously sample intermediate densities is very small, and spe-
cial measures must be applied to enable measurement of the
probability distribution at these densities. The transition-
matrix Monte Carlo~TMMC! ~Ref. 31! method, with an
N-dependent sampling bias, is well suited for this purpose.
The method monitors the acceptance probability of at-
tempted MC trials and subsequently uses this information to
calculate the macrostate transition probability matrix. Once
the transition probabilities are known, macrostate probabili-
ties can be obtained from the detailed balance condition,

PNPN,N85PN8PN8,N . ~7!

The transition-probability matrix is tridiagonal, as the only
transitions inN are such thatN→N, N→N11, andN→N
21, so the set of Eqs.~7! yield unique values for thePN .

Biasing the simulation so that the system samples all
states evenly requires setting a weight functionh(N) in ac-
cordance with multicanonical sampling.32 In the present
study, we set the weights equal to the inverse of current
estimate of the macrostate probabilities, i.e.,

h~N!52 ln P~N!.

As described above, in the TMMC approach we do not cal-
culate directly the macrostate probabilities, but instead de-
rive them from the macrostate transition probabilities. Ac-
cordingly, the weights are determined using the following
sequential relation,

h~N11!5h~N!1 lnS PN11,N

PN,N11
D ,

where we take arbitrarilyh(0)50. Acceptance criteria are
modified in the presence of the bias as follows:

acc~o→n!5minF1,
hnpn

hopo
G ,

wherehn andho are weights corresponding to microstaten
ando, respectively.

An advantage of the TMMC method is that it can be
applied cumulatively, meaning that the existing transition-
probability information does not need to be discarded upon
redefinition of the sampling bias. This aspect of TMMC is
helpful because the method relies on an iterative scheme to
evolve the sampling bias, which ensures that all particle
numbers are sampled sufficiently. By adopting this approach,
new estimates of the bias reflect all transition-probability in-
formation collected from the onset of the simulation, and are
not restricted to information taken only since the last update
of the bias weights.

3407J. Chem. Phys., Vol. 119, No. 6, 8 August 2003 Surface tension of a square-well fluid



Another important element of this method is the use of
the histogram reweighting method of Ferrenberg and
Swendson33 to evaluate the phase-coexistence value of the
chemical potential. This determination is readily performed
from knowledge of the probability distributionPN from the
TMMC calculations. The probability distribution for any
other chemical potential is calculated using the following
relationship:

ln P~N;m!5 ln P~N;mo!1b~m2mo!N,

where subscript ‘‘o’’ represents original simulation data. To
determine the coexistence chemical potential, we apply the
above relation to find the chemical potential that produces a
probability distributionPN

coex, where the areas under the va-
por and liquid regions are equal. Phase densities are calcu-
lated from the first moment of thePN

coex distribution.
Finally, to calculate the saturation pressure we use the

following expression:34

bpV5 lnS (
N

PN
coex/P0

coexD 2 ln~2!.

III. SIMULATION DETAILS

Vapor–liquid coexistence properties and surface tension
for the square well model were computed using the methods
described above. Three values of the square well parameter
were studied:l/s51.5, 1.75, and 2.0.

A. Molecular dynamics

Our molecular dynamics~MD! simulations were per-
formed in a canonical~NVT! ensemble, i.e., at prescribed
particle number, volume, and temperature. The temperature
was kept constant by simple momentum scaling, with all
momenta multiplied by an appropriate factor at the end of
each time step such that the total kinetic energy of the system
is consistent with the equipartition value of the
temperature.23 The reduced time stepDt* ~in units of
sAm/«) was fixed at 0.02; the only effect of the time-step

parameter is to determine the frequency for updating aver-
ages and rescaling velocities to the desired temperature. Oth-
erwise the usual collision-based algorithm for generating
molecule trajectories was employed.23

The simulation was started from a face centered-cubic
lattice configuration in a cubic periodic box of dimension
about 8.5s. We start with a density higher than the appro-
priate liquid density and expand the volume in one direction,
extending it to four times its original value, to create the
initial vapor region. The simulations were conducted with
system sizes of 500 particles; a few simulations of 1024 par-
ticles ~in a proportionately larger box! were performed at

FIG. 2. Surface tension (g* 5gs2/«) for the vapor–
liquid interface of square-well fluid for three different
well widths, as a function of temperature. Open sym-
bols represent data via MD, filled symbols represent
data via GC-TMMC, and lines are data via MC-volume
change.

TABLE I. Surface tensiong* 5gs2/« as a function of temperatureT*
5kT/« for square well molecules for three values of potential range~l!
evaluated via MD simulations of 500 particles. Numbers in parentheses
indicate the 67% confidence limits of the last digit of the reported value.

l51.5 l51.75 l52.0

T* g* T* g* T* g*

0.88987 0.449~7! 1.0866 0.99~2! 1.897 1.382~8!
0.91425 0.398~7! 1.17715 0.799~5! 1.9241 1.286~9!
0.93863 0.381~6! 1.2677 0.655~5! 1.9783 1.137~7!
0.96301 0.342~6! 1.28581 0.632~5! 2.0325 1.007~9!
0.9752 0.307~6! 1.32203 0.570~5! 2.0867 0.83~4!
1 0.280~4! 1.35825 0.512~5! 2.1409 0.774~7!
1.05 0.213~4! 1.39447 0.463~5! 2.168 0.67~3!
1.08 0.171~3! 1.43069 0.420~5! 2.2222 0.58~1!
1.1 0.139~3! 1.4488 0.393~4! 2.3306 0.40~1!
1.12 0.115~3! 1.48502 0.352~5! 2.3848 0.35~1!
1.15 0.073~3! 1.52124 0.300~4! 2.439 0.265~9!
1.18 0.023~2! 1.55 0.268~4! 2.4932 0.203~9!
1.2 0.0074~20! 1.57 0.235~5! 2.5474 0.128~8!

1.6 0.212~5! 2.6016 0.088~7!
1.62 0.181~4!
1.65 0.145~4!
1.68 0.121~4!
1.7 0.079~3!
1.72 0.067~3!
1.73 0.055~3!
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lower temperatures to ensure there were no significant finite-
size effects. The simulations were equilibrated for 1 million
time steps and averages were taken for 1 million time steps.

B. MC-volume change

The scheme used to generate the interface in the MD
simulations is also used for MC. The simulations were per-
formed in a NVT ensemble with system sizes again of 500 or
1024 particles. The simulations were equilibrated for 700 K
MC cycles and averages were taken for 500 K MC cycles,
where one MC cycle isN MC trials. The volume change step
was taken in lnV and was fixed for the simulation to range
across60.0005 for all the cases.

C. GC-TMMC

We performed grand-canonical-transition matrix Monte
Carlo simulations with frequency 90% particle insertion/
deletion and 10% particle displacements. Bias weightsh(N)
were updated after every million MC trials. The length of the
runs ranged from 300 million to one billion trials, depending
on the simulation box size. Four independent simulations
were performed for calculating the confidence limits. Coex-
istence properties were calculated using a cubic box of size
10 s. Surface tensions were calculated using the finite size
scaling method, with cubic boxes of sizeL58, 9, 10, 12, and
14s. In order to speed up the calculation a cell-based neigh-
bor list scheme was applied. The data of del Rioet al.35 gave
a good indication of the coexistence value of the chemical
potential, and this value was input to the GCMC simulations.
For temperatures different from those studied by del Rio
et al., we interpolated their values.

IV. RESULTS AND DISCUSSIONS

Figure 2 presents results using methods discussed above
for the surface tension of the SW model for three well
widths, as a function of temperature. Table I presents the
surface tension data via MD, and Table II presents the data of
surface tension for different system size via GC-TMMC and
a comparison of values via MD. The MC volume change

method performs very poorly in this application, with confi-
dence limits that are 70–120 times larger than those for the
MD and GC-TMMC calculations~which themselves are in
excellent mutual agreement!. Also, the MC volume change
results at the largest well widthl51.75 diverge from the
other results at higher temperatures. The results from the
volume-change method do not seem to have a useful level of
precision and accuracy, particularly in comparison to the
other techniques, and thus we will not further consider the
results from this method. GC-TMMC results are shown only
for T/Tc>0.82,T/Tc>0.7,T/Tc>0.8 for the potential range
l51.5, 1.75, and 2.0, respectively. Below temperature
T/Tc50.7, the GC-TMMC approach used here~which con-
siders the entire range of density in one sampling window!
has difficulty in sampling the entire vapor–liquid region,
mainly because of the large differences in the free energies
across the range of states leads to longer simulation length
for the convergence of weights~in a subsequent study on a
different system we have parallelized this algorithm, with
sampling performed in individual windows across the den-

FIG. 3. Vapor–liquid surface tension of the square-well model of various
well-extentsl in corresponding state form.gR represents reduced surface
tension (grc

1/3/pc). Tc is the critical temperature. The values are calculated
via molecular dynamics. The error bars are smaller than the symbol size.

TABLE II. Surface tension data of square well molecules with variable potential range~l! of varying system
size ~cubic box of sizeL, in units of s! from grand-canonical transition-matrix Monte Carlo and comparison
with values from MD simulations.T* 5kT/«. Numbers in parentheses indicate the 67% confidence limits of
the last digit of the reported value.

T* L58 L59 L510 L512 L514 L5` MD

l51.5 1 0.252~2! 0.258~2! 0.263~2! 0.268~10! 0.273~9! 0.288~7! 0.280~4!
1.05 0.175~1! 0.179~1! 0.186~2! 0.190~10! 0.196~9! 0.209~5! 0.213~4!
1.12 0.085~1! 0.087~1! 0.088~1! 0.093~1! 0.097~1! 0.107~2! 0.115~3!
1.2 0.0161~2! 0.0156~5! 0.0143~5! 0.0126~7! 0.0118~12! 0.0068~13! 0.0074~20!

l51.75 1.268 0.614~1! 0.623~2! 0.629~4! 0.636~1! 0.670~6! 0.658~3! 0.656~6!
1.55 0.203~1! 0.210~1! 0.217~2! 0.230~1! 0.238~2! 0.264~3! 0.268~4!
1.65 0.101~1! 0.102~1! 0.105~1! 0.110~1! 0.114~1! 0.124~2! 0.145~4!
1.73 0.043~1! 0.041~1! 0.040~1! 0.039~1! 0.040~2! 0.037~1! 0.055~3!

l52.0 2.2222 0.456~1! 0.484~1! 0.508~1! 0.548~1! 0.561~2! 0.636~1! 0.58~1!
2.3306 0.290~1! 0.306~1! 0.317~1! 0.350~1! 0.367~1! 0.401~2! 0.40~1!
2.439 0.102~1! 0.154~1! 0.181~1! 0.191~1! 0.204~3! 0.228~1! 0.265~9!
2.4932 0.115~1! 0.117~1! 0.120~1! 0.128~1! 0.136~2! 0.144~2! 0.203~9!
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sity range, and find that the GC-TMMC method can be made
much more effective at lower temperatures!. Unsurprisingly,
there are enhanced system-size effects upon approach of the
critical temperature, and the MD results overestimate the
more accurate~due to finite-size scaling! GC-TMMC results.
Figure 3 presents the data~excluding the MC results! in
corresponding-states form, with surface tension and tempera-
ture reduced by the critical-point density and temperature:
TR5T/Tc , gR5grc

1/3/Pc . The critical properties themselves
are reported in Table III.

The data show that, as expected, the surface tension in-
creases with well extentl and decreases with temperature,
approaching a value of zero at the critical point. When
viewed in reduced form, the surface tension is invariant with
the range of the potential forTR greater than 0.8, at least for
the three cases considered here. At lower reduced tempera-
tures, the plots show more curvature, with the effect becom-

ing increasingly pronounced for increasing potential range,
and causing the curves to diverge from one another.

Figure 4 shows a comparison of the present MD results
with SAFT calculations of Glooret al.3 for the same SW
potential models. We have interpolated the results of Gloor
et al. to get the surface tension values forl51.5 andl
51.75. For the shortest-range system, the SAFT results con-
sistently underestimate the surface tension, but are in excel-
lent agreement with simulation forl51.75; this agreement
deteriorates asl is increased to 2.0, but only at the lowest
temperatures. Overall the SAFT treatment does a good job in
describing the effect of temperature and potential range on
the surface tension. The plot also shows a very good agree-
ment forl51.5 with the simulation results of Oreaet al.24

The results from the GC-TMMC method are sufficient to
calculate in detail the orthobaric densities and vapor pressure
for SW fluids at each well width at several temperatures. The
results of this calculation are reported in Table IV and in

FIG. 4. A comparison of surface tension computed via MD with the results
of Oreaet al. ~Ref. 24! and with the results of SAFT as calculated by Gloor
et al. ~Ref. 3!.

TABLE III. The critical temperatureTc* , densityrc* , and pressurePc* data
for square-well fluids with variable potential rangel estimated from grand-
canonical transition-matrix Monte Carlo and rectilinear diameter approach
and compared with literature values.

l Tc* rc* Pc* Source

1.5 1.2172~7! 0.3079~2! 0.0931~3! This work
1.2180~2! 0.310~1! 0.095~1! Orkoulaset al.a

1.218 0.3016 0.0939 del Rioet al.b

1.27 0.305577 0.11 Elliotet al.c

1.219~8! 0.299~23! 0.108~16! Vegaet al.d

1.75 1.809~2! 0.2653~18! 0.1263~11! This work
1.808 0.2648 0.1276 del Rioet al.b

1.79 0.26738 0.12 Elliotet al.c

1.811~13! 0.284~9! 0.179~20! Vegaet al.d

2.0 2.68~1! 0.251~26! 0.1975~43! This work
2.691 0.2549 0.2021 del Rioet al.b

2.61 0.26738 0.17 Elliotet al.c

2.764~23! 0.225~18! 0.197~26! Vegaet al.d

aReference 36.
bReference 35.
cReference 37.
dReference 13.

TABLE IV. Vapor–liquid coexistence data from grand-canonical transition-
matrix Monte Carlo simulations of square well molecules with variable
potential range (l51.5, 1.75, 2.0!. Subscriptsv and l represents vapor and
liquid, respectively. The errors in densities and pressures represent one stan-
dard deviation of the mean for four independent runs.

T* rv* r l* P*

l51.5
0.8533 0.0097~1! 0.7162~1! 0.0075~1!
1 0.0315~1! 0.646~1! 0.0251~1!
1.05 0.0453~1! 0.6187~4! 0.03526~2!
1.08 0.05639~5! 0.5999~6! 0.04277~2!
1.1 0.06550~1! 0.5846~5! 0.04843~1!
1.12 0.0762~1! 0.567~2! 0.05461~3!
1.15 0.0971~2! 0.5384~1! 0.06500~3!
1.18 0.1298~2! 0.4965~5! 0.07707~4!
1.2 0.1641~4! 0.456~2! 0.08622~2!

l51.75 1 0.0019~1! 0.725~9! 0.0019~1!
1.2 0.00811~2! 0.6643~7! 0.00894~2!
1.268 0.01199~3! 0.641~2! 0.01357~2!
1.3 0.01409~2! 0.629~2! 0.0161~2!
1.5 0.03706~6! 0.555~1! 0.04236~2!
1.55 0.0462~1! 0.5343~5! 0.0519~1!
1.57 0.0505~1! 0.5252~4! 0.0561~1!
1.6 0.0579~1! 0.5107~2! 0.06299~8!
1.62 0.0633~1! 0.5020~4! 0.06786~7!
1.65 0.0729~1! 0.4848~7! 0.0757~1!
1.68 0.0844~1! 0.4677~4! 0.08419~2!
1.7 0.0934~1! 0.4558~8! 0.09018~4!
1.72 0.1049~3! 0.4384~5! 0.09670~4!
1.73 0.1115~6! 0.431~1! 0.1000~1!
1.75 0.1278~9! 0.4106~8! 0.1071~1!
1.8 0.217~18! 0.381~8! 0.12786~7!

l52.0 1.897 0.0111~5! 0.71~1! 0.0192~5!
2.1 0.0247~4! 0.636~8! 0.0432~6!
2.2 0.03465~3! 0.598~1! 0.05992~9!
2.35 0.05489~4! 0.5339~2! 0.09101~7!
2.45 0.07467~3! 0.4872~3! 0.1168~1!
2.5 0.0878~2! 0.4624~8! 0.13145~1!
2.52 0.0945~1! 0.4517~1! 0.1378~1!
2.53 0.0973~2! 0.4468~7! 0.1408~1!
2.54 0.1011~4! 0.441~1! 0.1442~2!
2.56 0.1094~1! 0.4274~7! 0.1508~1!
2.57 0.1137~2! 0.423~1! 0.1541~1!
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Fig. 5, where they are compared with previous results of
del Rio et al.,35 Orkoulas and Panagiotopoulos,36 Elliot and
Hu,37 and Vegaet al.13 In all cases the new GC-TMMC re-
sults are quite precise for all conditions studied, even near
the critical temperature. The agreement with del Rioet al. is
excellent, aside from one point that appears to reflect a typo-
graphical error in Ref. 35. Results from Elliotet al. are in
quite good agreement too, except at one liquid point~low
temperature! for potential rangel51.75 and 2.0. In com-
parison, the data of Vegaet al. look flawed, a conclusion also
made by del Rioet al. We compare our results of potential
rangel51.5 additionally with the calculations of Orkoulas
et al. The agreement there is excellent, as it is with all the
other studies for this system, suggesting all these methods
perform well for this system.

Figure 6 shows the saturated vapor pressure in a
Clausius–Clapeyron plot, as calculated via GC-TMMC.
Comparison with the literature data follows the same trends

as with the orthobaric densities: the agreement is very good,
except for the Gibbs ensemble data of Vegaet al.13

The critical properties are estimated from a least square
fit of the law of rectilinear diameter and the scaling
relation,38

r l2rv5C1S 12
T

Tc
D bc

1C2S 12
T

Tc
D bc1D

,

wherer l and rv are the liquid and vapor densities, respec-
tively, and C1 and C2 are fitting parameters. The critical
exponentbc is taken as 0.325 andD50.51. The critical tem-
perature estimate from the above is utilized to get the critical
density from the least square fit of the following expression:

r l1rv

2
5rc1C3~T2Tc!.

FIG. 5. Orthobaric densities of the square-well model
for three values of the well extentl, measured via TM-
GCMC and compared with the results of del Rioet al.
~Ref. 35!, Elliot and Hu~Ref. 37!, Vegaet al. ~Ref. 13!,
and Orkoulaset al. ~Ref. 36!. The critical point esti-
mated by GC-TMMC~marked by the3! is also dis-
played and compared with literature values.

FIG. 6. The vapor pressure curve for the square-well
fluids for three values of the well-extentl. The results
of this work are shown with the other literature values.
Also shown are the critical points~3! from the GC-
TMMC compared with the estimates of del Rioet al.
~Ref. 35!, Elliot and Hu~Ref. 37!, Vegaet al. ~Ref. 13!,
and Orkoulas and Pangiotopoulos~Ref. 36! ~for l
51.5).
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Critical pressure is calculated using the least square fitting of
the following expression:

ln P5A1B/T,

whereA andB are constants.
The critical properties of the square well fluid with vari-

able range of well-width are listed in Table I. We compared
the critical value estimation with the results of del Rio
et al.,35 Orkoulas and Panagiotopoulos,36 and Elliot and
Hu.37 Our results are in good agreement with del Rioet al.35

and Orkoulas and Panagiotopoulos.36 The critical points es-
timated by Elliot and Hu37 show some deviation from the
current results.

V. CONCLUSION

We compared the interfacial tension of the square-well
model as calculated with several techniques, and for several
values of the attractive range of the potential. We found that
MC-volume change is not a good method for this system.
GC-TMMC and MD are in good mutual agreement. We also
compared the surface tension calculated via GC-TMMC/MD
with SAFT, and concluded that SAFT gives a good estimate
of square-well surface tension.

Based on our experience in this work and studies cur-
rently underway, we consider the MD method to be better for
the surface tension calculation of the SW system when ap-
plied at low temperatures (T,0.7Tc), and that the GC-
TMMC method with finite-size scaling is better at higher
temperatures. However our overall preference is for the GC-
TMMC method, as we have since found that it can be paral-
lelized well, making it effective over the entire range of fluid
conditions. This observation holdsa fortiori when the meth-
ods are applied for even more complex systems, such as
models for associating fluids.

In addition to surface tension calculation, we also pre-
sented phase coexistence data which are given with high pre-
cision using GC-TMMC method. Critical properties are also
estimated and are found to be in good agreement with results
reported recently by del Rioet al.
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